miércoles, 9 de diciembre de 2009

LÍNEAS DE TRANSMISIÓN

Una línea de transmisión es una estructura material utilizada para dirigir la transmisión de energía en forma de ondas electromagnéticas, comprendiendo el todo o una parte de la distancia entre dos lugares que se comunican.

En adelante utilizaremos la denominación de líneas de transmisión exclusivamente para aquellos medios de transmisión con soporte físico, susceptibles de guiar ondas electromagnéticas en modo TEM (modo transversal electromagnético). Un modo TEM se caracteriza por el hecho de que tanto el campo eléctrico, como el campo magnetico que forman la onda son perpendiculares a la dirección en que se propaga la energía; sin existir, por tanto componente de los campos en la dirección axial (dirección en que se propaga la energía).

Para que existan propagación energética en modo TEM, es necesario que existan al menos dos conductores eléctricos y un medio dieléctrico entre ambos (que puede incluso ser aire o vacío). Ejemplos de líneas de transmisión son la línea bifilar, el cable coaxial, y líneas planares tales como la stripline, la microstrip...

Cuando el modo de propagación es TEM, se pueden definir, sin ambigüedad, tensiones y corrientes, y el análisis electromagnético de la estructura (estudio de campos) no se hace imprescindible, siendo posible una representación circuital con parámetros distribuidos, tal y como aquí se trata con posterioridad.

Así podemos decir que el modelo circuital equivalente de un tramo de línea de transmisión ideal de longitud infinitesimal dz está compuesto por una bobina serie que representa la autoinducción L de la línea de transmisión por unidad de longitud (medida en H/m), y un condensador en paralelo para modelar la capacidad por unidad de longitud C de dimensiones F/m.

Cuando la línea de transmisión introduce pérdidas, deja de tener un carácter ideal y es necesario ampliar el equivalente circuital anterior añadiendo dos nuevos elementos: una resistencia serie R, que caracteriza las pérdidas óhmicas por unidad de longitud generadas por la conductividad finita de los conductores, y que se mide en Ω/m, y una conductancia en paralelo G, con dimensiones de S/m (o Ω-1m-1), para representar las pérdidas que se producen en el material dieléctrico por una conductividad equivalente no nula, lo que da lugar al circuito equivalente de la siguiente figura:




Las ondas planas uniformes, son ejemplos de propagación de ondas sin guías (libremente), en el sentido de que una vez que se han propagado en una dirección, dentro de un bloque infinito de material, continúan propagándose en la misma dirección. De acuerdo con lo anterior, las líneas de transmisión (al igual que las guías de onda) se utilizan para guiar la propagación de la energía de un punto a otro.

Así pues, una línea de transmisión se puede definir como un dispositivo para transmitir o guiar energía de un punto a otro. Usualmente se desea que la energía sea transportada con un máximo de eficiencia, haciendo las pérdidas por calor o por radiación lo más pequeñas posible.

Las líneas de transmisión pueden ser de muchas formas y tamaños. Es conveniente clasificarlas en base a las configuraciones de sus campo E y H, es decir, en base a los modos que pueden transmitir. De esta manera, las líneas de transmisión se pueden dividir en dos grupos principales:

1) Las que son capaces de transmitir el modo Transversal Electromagnético (TEM). Del cual se desprenden las O.P.U.

2) Las que son capaces de transmitir únicamente modos de orden más alto.

En un modo TEM ambos, el campo eléctrico y el campo magnético, están completamente en la dirección de propagación. No hay componente ni de E, ni de H en la dirección de transmisión. Por ejemplo, si la dirección de transmisión es en Z, entonces las únicas posibilidades para la dirección de E y de H serían Ex y Hy ó Ey y Hx. La única diferencia con las O.P.U. es que en el modo TEM E y H no necesariamente son independientes de su posición en el plano formado por XY (el cual es transversal a Z). Mientras que en las O.P.U. E Y H sí deben ser independientes de su posición en estos planos (esto es la característica de uniformidad).

Los modos de más alto orden siempre tienen al menos una componente, de alguno de los campos en la dirección de transmisión.

Todas las líneas de dos conductores como el cable coaxial o el cable de dos hilos son ejemplos de líneas que transmiten el modo TEM o simplemente de líneas TEM; mientras que las guías de onda huecas, de un solo conductor, son ejemplos de líneas de modos más altos.

En resumen:

1) Línea modo TEM.- E y H son totalmente transversales a la dirección de
transmisión. Ejemplos: todas las líneas de dos conductores.

2) Línea modo de más alto orden.- E ó H ó ambos tienen componentes en la
dirección de transmisión. Ejemplos de modos de más alto orden son el modo TM,
el modo TE. Ejemplos de este tipo de líneas de transmisión son las guías de onda
huecas de un solo conductor o las líneas trifásicas.

En el ámbito electrónico el término "línea" o "línea de transmisión" usualmente se utiliza únicamente para hacer referencia a los dispositivos que pueden transmitir modo TEM, mientras que el término "guía" o "guía de onda" se utiliza para hacer referencia a los dispositivos que pueden transmitir modos de más alto orden.

A continuación se muestra el diagrama (figura 1.1) utilizado para representar una línea de transmisión y en seguida se mostrarán algunas analogías útiles entre las O.P.U. y las líneas de transmisión:

lunes, 7 de diciembre de 2009

Máquinas eléctricas

MÁQUINAS ELÉCTRICAS

Una máquina eléctrica es un dispositivo que transforma la energía eléctrica en otra energía, o bien, en energía eléctrica pero con una presentación distinta, pasando esta energía por una etapa de almacenamiento en un campo magnético. Se clasifican en tres grandes grupos: generadores, motores y transformadores.
Los generadores transforman energía mecánica en eléctrica, mientras que los motores transforman la energía eléctrica en mecánica haciendo girar un eje. El motor se puede clasificar en motor de corriente continua o motor de corriente alterna. Los transformadores y convertidores conservan la forma de la energía pero transforman sus características.
Una máquina eléctrica tiene un circuito magnético y dos circuitos eléctricos. Normalmente uno de los circuitos eléctricos se llama excitación, porque al ser recorrido por una corriente eléctrica produce los amperivueltas necesarios para crear el flujo establecido en el conjunto de la máquina.
Desde una visión mecánica, las máquinas eléctricas se pueden clasificar en rotativas y estáticas. Las máquinas rotativas están provistas de partes giratorias, como las dinamos, alternadores, motores. Las máquinas estáticas no disponen de partes móviles, como los transformadores.
En las máquinas rotativas hay una parte fija llamada estátor y una parte móvil llamada rotor. Normalmente el rotor gira en el interior del estátor. Al espacio de aire existente entre ambos se le denomina entrehierro.



Potencia de las máquinas eléctricas

La potencia de una máquina eléctrica es la energía desarrollada en la unidad de tiempo. La potencia de un motor es la que se suministra por su eje. Una dinamo absorbe energía mecánica y suministra energía eléctrica, y un motor absorbe energía eléctrica y suministra energía mecánica.
La potencia que da una máquina en un instante determinado depende de las condiciones externas a ella; en una dinamo del circuito exterior de utilización y en un motor de la resistencia mecánica de los mecanismos que mueve.
Entre todos los valores de potencia posibles hay uno que da las características de la máquina, es la potencia nominal, que se define como la que puede suministrar sin que la temperatura llegue a los límites admitidos por los materiales aislantes empleados. Cuando la máquina trabaja en esta potencia se dice que está a plena carga. Cuando una máquina trabaja durante breves instantes a una potencia superior a la nominal se dice que está trabajando en sobrecarga.

Clasificación según el servicio

Es importante conocer la clase de servicio a la que estará sometida una máquina:
Servicio continuo: Corresponde a una carga constante durante un tiempo suficientemente largo como para que la temperatura llegue a estabilizarse.
Servicio continuo variable: Se da en máquinas que trabajan constantemente pero en las que el régimen de carga varía de un momento a otro.
Servicio intermitente: Los tiempos de trabajo están separados por tìempos de reposo. Factor de marcha es la relación entre el tiempo de trabajo y la duración total del ciclo de trabajo.
Servicio unihorario: La máquina está una hora en marcha a un régimen constante superior al continuo, pero no llega a alcanzar la temperatura que ponga en peligro los materiales aislantes. La temperatura no llega a estabilizarse.

Rendimiento

De manera general, se define como la relación entre la potencia útil y la potencia absorbida expresado en %.


ELECTROTECNIA



ELECTROTECNIA